

Горно-металлургический институт имени О.А. Байконурова Кафедра «Металлургия и обогащение полезных ископаемых»

ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА

7M07232 – «Экстрактивная металлургия»

Код и классификация области 7M07 — Инженерные, обрабатывающие и образования: строительные отрасли

Код и классификация направлений 7М072 – Производственные и обрабатывающие

подготовки: отрасли

Группа образовательных программ М117 – «Металлургическая инженерия»

ΓΟΠ:

Уровень по НРК: 7 Уровень по ОРК: 7

 Срок обучения:
 1,5 года

 Объем кредитов:
 90

Алматы 2025

НЕКОММЕРЧЕСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И. САТПАЕВА»

НЕКОММЕРЧЕСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И. САТПАЕВА»

Образовательная программа «7М07232 — Экстрактивная металлургия» утверждена на заседании Учёного совета КазНИТУ им. К.И.Сатпаева.

Протокол № <u>4</u> от « <u>12</u> » <u>12</u> 2024 г.

Рассмотрена и рекомендована к утверждению на заседании Учебнометодического совета КазНИТУ им. К.И.Сатпаева.

Протокол № <u>3</u> от «<u>20</u> » <u>12</u> 2024 г.

Образовательная программа «7M07232— Экстрактивная металлургия» разработан академическим комитетом по направлению «7M072—Производственные и обрабатывающие отрасли»

Ф.И.О.	Учёная степень/ учёное звание	Должность	Место	Подписн
Председатель акаде!	мического комитета:		работы	Le
ьарменшинова М. Б.	к.т.н., ассоциированный профессор	Заведующая кафедрой МиОПИ	КазНИТУ имени К.И. Сатпаева	The
Профессорско-препо	давательский состав	•	Сатпасва	0/1
Молдабаева Г.Ж.	к.т.н., ассоциированный профессор	Профессор каф.МиОПИ	КазНИТУ имени К.И. Сатпаева	TUm-
Усольцева Г. А.	к.т.н.	Ассоц. профессор каф.МиОПИ	КазНИТУ имени К.И.	\$
Работодатели:			Сатпаева	/
Оспанов Е. А.	д.т.н.	Начальник управления комплексной переработки	ТОО «Корпорация Казахмыс»	Any
Обучающиеся:		техногенного сырья		
Сағындық Ә. Н.	бакалавр техники и технологии	Магистрант 2 года обучения	TOO «KAZ Minerals»	CAN

Оглавление

- Список сокращений и обозначений
- 1. Описание образовательной программы
- 2. Цель и задачи образовательной программы
- 3. Требования к оценке результатов обучения образовательной программы
- 4. Паспорт образовательной программы
- 4.1. Общие сведения
- 4.2. Взаимосвязь достижимости формируемых результатов обучения по образовательной программе и учебных дисциплин
 - 5. Учебный план образовательной программы

Список сокращений и обозначений

HAO «Казахский национальный исследовательский технический университет имени К.И. Сатпаева» — НАО КазНИТУ им К.И. Сатпаева;

ГОСО – Государственный общеобязательный стандарт образования РеспубликиКазахстан;

МОНРК-Министерство образования и науки Республики Казахстан;

ОП – образовательная программа;

 ${\bf CPO}-{\bf c}$ амостоятельная работа обучающегося (студента, магистранта, докторанта);

СРОП— самостоятельная работа обучающегося с преподавателем (самостоятельная работа студента (магистранта, докторанта) с преподавателем);

РУП-рабочий учебный план;

КЭД – каталог элективных дисциплин;

ВК – вузовский компонент;

КВ-компонент по выбору;

НРК – национальная рамка квалификаций;

ОРК – отраслевая рамка квалификаций;

РО-результаты обучения;

КК-ключевые компетенции.

ЦУР – цели устойчивого развития

1. Описание образовательной программы

Образовательная программа 7М07232 - "Экстрактивная металлургия" отраслевую, приоритетную, фундаментальную, включает естественнонаучную, общеинженерную и профессиональную подготовку магистров области экстрактивной металлургии, направленной ресурсо-сберегательную, современную, комплексную, бережливую И щадящую переработку сырья и производство продукции с повышенной добавленной стоимостью, на получение энерго-генерирующих металлов в соответствии с атласом новых профессий, запросов производства тенденций мирового рынка металлов.

Предназначена для осуществления профильной подготовки магистров по образовательной программе 7М07232 - "Экстрактивная металлургия" в Satbayev University и разработана в рамках направления «Производственные и обрабатывающие отрасли».

Отличительная особенность программы 7М07232 - "Экстрактивная образовательная металлургия", заключается TOM, программа что обеспечивает международную, практико-ориентированную подготовку способных самостоятельному магистрантов, ведению научноисследовательской и инновационно-проектной деятельности. Концепция образовательной программы отличается тем, что обучение направлено на формирование компетенций получения энерго-генерирующих металлов; трансформации существующих технологий в области цветной металлургии на принципы щадящей, экологичной, комплексной переработки сырья в условиях обеднения руд и отходов, при одновременной цифровизации производства.

Подготовка квалифицированных специалистов в области металлургии, способных проектировать, разрабатывать, управлять и эксплуатировать инженерные системы и расчеты с учетом критериев устойчивого развития, экологической и социальной ответственности, а также управленческих принципов в рамках ESG и Целей устойчивого развития (ЦУР).

Введение в образовательную программу. Развитие инновационной экономики предполагает подготовку специалистов в области металлургии, соответствующих профессий тенденций атласу новых развития металлургического сектора, a именно ПО направлениям: технологических схем к обеднению руд, экологизации металлургических производств, эффективного рециклинга отходов металлургического сектора, усиления автоматизации и роботизации производства, роста степени износа оборудования в горно-металлургическом секторе.

Образовательная программа направлена на формирование компетенций металлургических технологий области новых перспективных направлений развития технологий переработки сырья тяжелых и легких редких и благородных, тугоплавких, энерго-генерирующих металлов, а также изучение методических принципов бережливого НИОКР и практики их использования ДЛЯ измерения уровня готовности инновационного продукта/проекта к коммерциализации.

Программа соответствует единой государственной политике долгосрочного социально-экономического развития страны, подготовки высококвалифицированных кадров на основе достижений науки и техники, эффективного использования отечественного научно-технологического и кадрового потенциала республики.

Программа является комплексной и наукоемкой. Эффективность использования ее результатов имеет для республики стратегическое значение.

Программа направлена на подготовку специалистов по ключевым направлениям металлургической отрасли:

Виды трудовой деятельности. Специалисты, окончившие магистратуру, выполняют производственно-технологическую и организационную работу на промышленных предприятиях на ведущих позициях, соответствующих 7 уровню национальной рамки квалификации, а также проводят научно-исследовательскую работу в сфере комплексной переработки минерального сырья и получения инновационной продукции повышенных потребительских свойств.

Виды экономической деятельности: переработка руд тяжелых, легких, редких, тугоплавких цветных металлов, урановых руд; получение энергогенерирующих металлов; переработка техногенного металлургического сырья; утилизация отходов металлургических производств.

профессиональной Объекты деятельности. Объектами профессиональной деятельности выпускников являются существующие металлургические предприятия черной и цветной металлургии, технологии экстрактивной металлургии, направленные на трансформацию производства по принципу бережливого производства, экологизации, получения энергогенерирующих металлов, а также обогатительные фабрики, химического, горно-химического машиностроительного производств, И научно-исследовательские и проектные институты, заводские лаборатории, осуществляющие подобную деятельность.

2. Цель и задачи образовательной программы

Цель ОП: Формирование знаний об устойчивом развитии экстрактивной металлургии, трансформации технологий, извлечении стратегических, энерго-генерирующих металлов, о получении передовой товарной продукции высоких переделов из металлургического сырья.

Образовательная программа "Экстрактивная металлургия" направлены на подготовку специалистов, способных разрабатывать и внедрять экологически безопасные и ресурсосберегающие технологии в металлургии в рамках ESG, Целей устойчивого развития (ЦУР) и инклюзивного обучения.

Программа поддерживает несколько глобальных целей:

- 1. ЦУР 4 Качественное образование
- Подготовка квалифицированных специалистов в области экстрактивной металлургии.
- Развитие современных образовательных методик, включая цифровые технологии и научные исследования.
 - Концепция инклюзивного обучения.
 - 2. ЦУР 9 Индустриализация, инновации и инфраструктура
 - Разработка новых технологических решений в металлургии.
 - Внедрение передовых методов переработки металлов.
 - 3. ЦУР 12 Ответственное потребление и производство
- Снижение отходов и негативного воздействия металлургического производства.
 - Разработка и внедрение технологий вторичной переработки металлов.
 - 4. ЦУР 13 Борьба с изменением климата
 - Снижение выбросов парниковых газов в металлургической отрасли.
- Использование энергоэффективных процессов добычи и переработки металлов.

Задачи ОП:

- 1. Формирование теоретических знаний и практических умений и навыков в области экстрактивной щадящей металлургии, экологизации существующих технологий металлургического производства, комплексной переработки сырья и отходов, содержащих металлы.
- 2. Формирование теоретических знаний и практических умений и навыков в области ресурсо-сберегательной, бережливой и щадящей переработки сырья, производства продукции с повышенной добавленной стоимостью, согласно концепции ESG и целей устойчивого развития (ЦУР 12,13).
- 3. Формирование теоретических знаний и практических умений и навыков в области реновации существующего технологического процесса в процесс энергоемкости, ресурсосбережения, комплексности извлечения критически важных металлов для экономики страны и выбора соответствующей технологической схемы.
- 4. Формирование компетенций в области потребительских свойств продукции из энерго-генерирующих металлов, инновационных технологий

их производства для достижения целей устойчивого потребления и производства.

- 5. Формирование компетенций в области научно-технической, организационно-методической деятельности и перспективных направлений развития технологий ориентированной на производство тугоплавких и благородных металлов, РЗМ и РРМ и их соединений из различных видов природного и техногенного сырья.
- 6. Формирование компетенций в области разработки бережливого НИОКР и последующей коммерциализации проекта.
- 7. Компетентность выпускников в системе цифровизации металлургических процессов. Приобретение компетенций в управлении производством на всех этапах жизненного цикла производимой продукции.

Магистр техники и технологии в области экстрактивной металлургии должен решать следующие задачи в соответствии с видами профессиональной деятельности:

научно-исследовательская деятельность:

- способность формировать диагностические решения профессиональных задач путем интеграции фундаментальных разделов наук и междисциплинарных знаний, полученных при освоении программы магистратуры;
- способность самостоятельно проводить научные эксперименты и исследования в профессиональной области, обобщать и анализировать экспериментальную информацию, делать выводы, формулировать заключения и рекомендации, осуществлять выбор технологических схем, способствующих экологизации и ресурсосбережению производства;
- способность создавать и исследовать модели изучаемых объектов на основе использования, углубленных теоретических и практических знаний в области экстрактивной металлургии и междисциплинарных подходов генерации знаний;

научно-производственная деятельность:

- способность самостоятельно проводить производственные и научнопроизводственные, лабораторные и интерпретационные работы при решении технологических залач:
- способность к профессиональной эксплуатации современного лабораторного и технологического оборудования в области экстрактивной металлургии;
- способность использовать современные методы обработки и интерпретации комплексной информации для решения производственных задач;

проектная деятельность:

- способность самостоятельно составлять и представлять проекты научно-исследовательских и научно-производственных работ;
- готовность к проектированию комплексных научноисследовательских и научно-производственных работ при трансформации существующих технологий на принципы бережливого производства и щадящей металлургии;

организационно-управленческая деятельность:

- готовность к использованию практических навыков организации и управления научно-исследовательскими и научно-производственными работами при решении профессиональных задач;
- готовность к практическому использованию нормативных документов при планировании и организации научно-производственных работ;

научно-педагогическая деятельность:

- способность проводить семинарские, лабораторные и практические занятия;
- способность участвовать в руководстве научно-учебной работой обучающихся в области экстрактивной металлургии.

Образовательная программа полностью разработана под задачами целей устойчивого развития (Цели 9,12,13) в металлургии:

Обучение студентов основам экстрактивной металлургии:

- Металлургические процессы получения металлов из руд.
- Методы гидро- и пирометаллургии.
- Новейшие технологии в отрасли.

Развитие навыков экологически чистого производства:

- Оптимизация процессов с минимизацией выбросов и отходов.
- Рециклинг и утилизация металлургических отходов.

Подготовка к научной и инновационной деятельности:

- Участие в исследовательских проектах.
- Разработка новых материалов и технологий.

Взаимодействие с промышленностью и международными организациями:

- Стажировки и практики на ведущих металлургических предприятиях.
- Международное сотрудничество в области экстрактивной металлургии.

3. Требования к оценке результатов обучения образовательной программы

Выпускник профильной магистратуры, должен: иметь представление:

- о роли науки и образования в общественной жизни;
- о современных тенденциях в развитии научного познания;
- об актуальных методологических и философских проблемах естественных наук;
 - о профессиональной компетентности преподавателя высшей школы;
- о коммуникативных, профессионально-технических языковых знаниях, о философских концепциях естествознания, научного мировоззрения.
- о закономерностях управленческой деятельности, системного и экологического мышления, критического мышления, лидерства, работы в команде и коммуникации.
- о навыках преподавания и наставничества над студентами бакалавриата.

- о проектно-конструкторской, научно-исследовательской, изобретательской, инновационной деятельности в области переработки минерального сырья и металлургии.

знать:

- методологию научного познания;
- принципы и структуру организации научной деятельности;
- психологию познавательной деятельности студентов в процессе обучения;
- психологические методы и средства повышения эффективности и качества обучения;
- международные и отечественные стандарты, постановления, распоряжения, приказы вышестоящих и других отечественных организаций, методические нормативные и руководящие материалы, касающиеся выполняемой работы;
- современное состояние и перспективы технического и технологического развития обогатительных и металлургических процессов, особенности деятельности учреждения, организации, предприятия и смежных отраслей;
- цели и задачи, стоящие перед специалистом в области экстрактивной и щадящей металлургии;
- современные методы исследования обогатительных и металлургических процессов, работы оборудования;
- основные требования, предъявляемые к технической документации материалам и изделиям;
- правила и нормы охраны труда, вопросы экологической безопасности технологических процессов;
- методы проведения экспертной оценки в области безопасности жизнедеятельности и защиты окружающей среды;
 - стандарты в области управления качеством;
- достижения науки и техники, передовой отечественный и зарубежный опыт в области обогащения полезных ископаемых и металлургии;
- не менее чем один иностранный язык на профессиональном уровне, позволяющим проводить научные исследования и практическую деятельность;
- методику проведения всех видов учебных занятий и самостоятельной работы обучающихся.

уметь:

- показывать коммуникативные, профессионально-технические языковые знания по иностранному, профессиональному языку.
- интегрировать психологические закономерности управленческой деятельности;
- демонстрировать навыки преподавания и наставничества над студентами бакалавриата;
- исследовать эмпирические данные на основе методологии научных исследований для умения написания статей, сбора наукометрических

данных, для защиты интеллектуальной собственности с использованием принципов проектного менеджмента;

- применять и внедрять принципиально новые схемы получения металлов, основанные на экономии ресурсов и сохранности окружающей среды, в условиях истощения руд, снижения концентрации металлов в рудах;
- решать инженерные расчеты в области экстрактивной металлургии, термодинамики и кинетики пиро- и гидрометаллургических процессов; обосновывать выбор процессов и требований к процессам ректификации и конденсации;
- разрабатывать и исследовать современные технологии получения энерго-генерирующих, радиоактивных, тугоплавких металлов; выполнять расчет и выбор основного и вспомогательного оборудования гидро—, пиро— и электрометаллургических процессов цветной металлургии, рассчитывать и прогнозировать электро— и металлотермическое производство металлов и сплавов;
- трансформировать существующие технологии под принципы бережливого производства и щадящей металлургии;
- дифференцировать современный физико-химический комплекс методов анализа металлургического сырья и продукции, конструировать порошковые материалы;
- применять современные, передовые знания о инновационных технологиях получения редких, редкоземельных и благородных металлов, легких и тугоплавких металлов, с применением методик ресурсо- и энергосбережения технологических схем;
- рационализировать использование критически важного,
 стратегического и техногенного сырья, управлять отходами металлургического производства;
- предотвращать, прогнозировать проблемы коррозии конструкций в металлургической отрасли; проявлять осведомленность о различных видах и типах оборудования в сфере металлургии для подбора наиболее оптимальных схем их компоновки и предотвращения конструкционных проблем.
- систематизировать принципы построения средств цифровой обработки данных, применения микропроцессоров в системах управления техническими объектами и технологическими процессами, проектировать системы управления на базе микроконтроллеров, разрабатывать прикладное программное обеспечение.
- выполнять анализ потребительских свойств продукции из энергогенерирующих металлов и применять статистические методы управления качеством на производственных предприятиях металлургической отрасли.

иметь навыки:

- научно-исследовательской деятельности, решения стандартных научных задач;
- осуществления образовательной и педагогической деятельности по кредитной технологии обучения;
 - методики преподавания профессиональных дисциплин;

- использования современных информационных технологий в образовательном процессе;
 - профессионального общения и межкультурной коммуникации;
- ораторского искусства, правильного и логичного оформления своих мыслей в устной и письменной форме;
- расширения и углубления знаний, необходимых для повседневной профессиональной деятельности и продолжения образования в докторантуре.
- формирования поиска экономически целесообразных технологий и методов снижения эмиссии вредных веществ в окружающую среду;
- выявления и оценки экологических рисков при ведении хозяйственноэкономической деятельности в металлургическом производстве;
- мониторинга экологической обстановки на месторождениях, обогатительных и перерабатывающих комбинатах;
 - определения влияния технологических процессов на экосистему;
- применения методик по снижению газообразных выбросов металлургических предприятий, выбора аппаратуры;
- щадящей металлургии при создании экологически чистого производства, методик сокращения выбросов и отходов металлургии.

быть компетентным:

- способностью к критическому мышлению и решению задач с учетом принципов устойчивого развития;
 - в научно-исследовательской и инновационно-проектной деятельности,
 - в технологиях получения энерго-генерирующих металлов;
- в трансформации существующих технологий в области цветной металлургии на принципы щадящей, экологичной, комплексной переработки сырья в условиях обеднения руд и отходов, при одновременной цифровизации производства.
 - в адаптации технологических схем к обеднению руд,
- в экологизации металлургических производств, эффективного рециклинга отходов металлургического сектора,
- в увеличении автоматизации и роботизации производства, роста степени износа оборудования в горно-металлургическом секторе.
 - в вопросах современных образовательных технологий;
- в выполнении научных проектов и исследований в профессиональной области:
- в способах обеспечения постоянного обновления знаний, расширения профессиональных навыков и умений.

4. Паспорт образовательной программы

4.1. Общие сведения

№	Название поля	Примечание
1	Код и классификация	7М07 - Инженерные, обрабатывающие и строительные
	области образования	отрасли
2	Код и классификация направлений	7М072 - Производственные и обрабатывающие отрасли

		НИЧЕСКИИ УНИВЕРСИТЕТ имени К.И. САТПАЕВА»
	ПОДГОТОВКИ	M117 Management
3	Группа	М117 – Металлургическая инженерия
	образовательных	
	программ	T) (0.7000)
4	Наименование	7М07232 – Экстрактивная металлургия
	образовательной	
	программы	
5	Краткое описание	Образовательная программа «Экстрактивная металлургия»
	образовательной	включает отраслевую, приоритетную, фундаментальную,
	программы	естественнонаучную, общеинженерную, практико-
		ориентированную и профессиональную подготовку
		магистров в области экстрактивной металлургии,
		направленной на современную, комплексную, ресурсо-
		сберегательную, бережливую и щадящую переработку
		сырья и производство продукции с повышенной
		добавленной стоимостью, на получение энерго-
		генерирующих металлов в соответствии с атласом новых
		профессий, запросов производства и тенденций мирового
		рынка металлов.
6	Цель ОП	Формирование знаний об устойчивом развитии
	•	экстрактивной металлургии, трансформации технологий,
		извлечении стратегических, энерго-генерирующих
		металлов, о получении передовой товарной продукции
		высоких переделов из металлургического сырья.
7	Вид ОП	Новая
8	Уровень по НРК	7
9	Уровень по ОРК	7
10	Отличительные	нет
	особенности ОП	
11	Перечень	1) иметь представление:
	компетенций	- о способности к критическому мышлению и решению
	образовательной	задач с учетом принципов устойчивого развития
	программы:	– о роли науки и образования в общественной жизни;
		– о современных тенденциях в развитии научного познания;
		– о профессиональной компетентности преподавателя
		высшей школы.
		2) знать:
		 методологию научного познания;
		– принципы и структуру организации научной
		деятельности;
	_	- цели и задачи, стоящие перед специалистом в области
		обогащения полезных ископаемых и металлургии для
		разработки и внедрения новейших наукоемких технологии
		производства продукции;
		– методы исследования обогатительных и
		металлургических процессов, работы оборудования.
		3) уметь:
	_	- разрабатывать энерго- и ресурсосберегающие технологии
		в области обогащения полезных ископаемых, металлургии
		и металлообработки;
	_	- разрабатывать мероприятия по защите окружающей среды
		для обогатительного и металлургического производства;
	_	- осуществлять планирование экспериментальных
		исследований, выбирать методы исследований.

- навыками эффективного управления проектами инженерных систем с учетом экологических, социальных и управленческих факторов
- научно-исследовательской деятельности, решения стандартных научных задач;
- осуществления образовательной и педагогической деятельности по кредитной технологии обучения;
- методики преподавания профессиональных дисциплин;
- использования современных информационных технологий в образовательном процессе;
- 5) быть компетентным:
- способностью разрабатывать инженерные решения, соответствующие принципам устойчивого развития и целям устойчивого развития;
- в области методологии научных исследований;
- в области научной и научно-педагогической деятельности в высших учебных заведениях;
- в вопросах современных образовательных технологий;
- в выполнении научных проектов и исследований в профессиональной области;
- в способах обеспечения постоянного обновления знаний, расширения профессиональных навыков и умений.

12 Результаты обучения образовательной программы:

- РО1 Показывать коммуникативные, профессиональнотехнические языковые знания по иностранному, профессиональному языку, знания философских концепций естествознания, научного мировоззрения, расширение профессиональных знаний для реализации устойчивого развития (ЦУР 4).
- РО2 Исследовать эмпирические данные на основе методологии научных исследований для умения написания статей, поддержка научных исследований, сбора наукометрических данных, для защиты интеллектуальной собственности с использованием принципов проектного менеджмента
- РОЗ Интегрировать психологические закономерности управленческой деятельности, системного и экологического мышления, синтезировать навыки психологии управления, критического мышления, подготовка лидеров и специалистов в условиях инклюзивного обучения, работы в команде и коммуникации для реализации устойчивого развития (ЦУР 4).
- РО4 Использовать инженерные расчеты в области экстрактивной прогнозирования металлургии ДЛЯ оптимизации металлургических процессов c экологии, получения новых материалов развитие устойчивых технологий в металлургии на основе щадящей металлургии для развития устойчивых инженерных решений (ЦУР 12).
- РО5 Применять и внедрять инновационные технологии комплексного извлечения экстрактивной металлургии редких, РЗМ, радиоактивных, благородных и тугоплавких металлов и стратегических материалов для реализации ответственного потребление ресурсов и производства

	IEAI	НИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И. САТПАЕВА»
	IEAI	РОб — Разрабатывать и внедрять инновационные, экологичные и энергоэффективные материалы, согласно концепции чистой энергии (ЦУР 7) передовые материалы с особыми свойствами для применения в электронике, авиакосмической, машиностроительной и атомной отраслях, для разработки защитных покрытий РО7 — Управлять и формировать знаниями в области расчета конверсионных процессов урана, фторидных технологий и получения передовых, композитных материалов на основе урана и его соединений для ядерной энергетики, согласно концепции чистой энергии (ЦУР 7). РО8 — Анализировать и применять технологии рационального использования ресурсов в жидкостной экстракции, аффинажа урана, благородных и РЗМ металлов, рафинирования металлов для получения металлов особой чистоты РО9 — управлять отходами металлургического производства, вторичного сектора на основе принципов щадящей металлургии, использовать передовые тепловые и применять плазменные технологии для снижение выбросов от металлургии для реализации развития инновационной инфраструктуры (ЦУР 9). РО10 — Применять методы инновационной передовых технологии производства в порошковой металлургии для получения передовых и композиционных материалов, применять ресурсосберегающие технологии, аддитивные технологии и 3D принтинг материалов на основе РМ и РЗМ
		PO10 — Применять методы инновационной передовых технологии производства в порошковой металлургии для получения передовых и композиционных материалов, применять ресурсосберегающие технологии, аддитивные
		технологии и 3D принтинг материалов на основе PM и P3M металлов, урана и тугоплавких металлов.
13	Форма обучения	Очная
14	Срок обучения	1,5 года
15	Объем кредитов	90
16	Языки обучения	Казахский, русский, английский
17	Присуждаемая академическая степень	Магистр техники и технологии по образовательной программе «7М07232 - Экстрактивная металлургия»
18	Разработчики и авторы:	Чепуштанова Т.А., Барменшинова М.Б.

4.2. Взаимосвязь достижимости формируемых результатов обучения по образовательной программе и учебных дисциплин

№	Наименование	Краткое описание дисциплины	Кол-во	đ	Рорм	ируем	лые р	езуль	таты	обуч	ения	(кодн	J)
	дисциплины		кредитов	PO			PO	PO	PO	PO	PO	PO	PO
				1	2	3	4	5	6	7	8	9	10
		Цикл базовых дисцип											
		Вузовскийкомпоне				1	1						
LNG212	Иностарнный язык	Цель дисциплины заключается в приобретении и	2	V	V	V							
	(профессиональны	совершенствовании компетенций в соответствии											
	й)	с торговыми стандартами иностранного											
		образования, способных конкурировать на											
		рынке труда, т.к. через иностранный язык											
		будущий магистр получает доступ к											
		академическим знаниям, новым технологиям и											
		современной информации, позволяющим											
		использовать иностранный язык как средство											
		общения в межкультурной, профессиональной и											
		научной деятельности.											
HUM2	Психология	Приобретение навыков принятия стратегических	2		V	٧							
11	управления	и управленческих решений с учётом											
		психологических особенностей индивидуума и											
		коллектива. Содержание: современная роль и											
		содержание психологических аспектов в											
		управленческой деятельности, методы											
		улучшение психологической грамотности,											
		состав и устройство управленческой											
		деятельности, как на местном уровне, так и в											
		зарубежном, психологическая особенность											
		современных управленцев.											
MNG726	Менеджмент	Формирование научного представления об	2		V	٧							
		управлении как виде профессиональной											
		деятельности. Содержание: освоение											
		магистрантами общетеоретических положений											
		управления социально-экономическими											

		системами; овладение умениями и навыками практического решения управленческих проблем; изучение мирового опыта менеджмента, а также особенностей казахстанского менеджмента; обучение решению практических вопросов, связанных с							
		управлением различными сторонами деятельности организаций.							
		Цикл базовых дисцип.	 ЛИН						
		Компонент по выбо							
MEI248	Термодинамика, кинетика, расчеты и прогнозирование металлургических процессов	Изучение термодинамики, кинетики, расчеты и прогнозирование металлургических процессов. Освоение методов расчета термодинамических и кинетических параметров процессов, таких как плавка, восстановление металлов, выщелачивание, экстракция, ионный обмен, электролиз, рафинирование и переработка руд. Прогнозирование поведения процессов повышения их эффективности, снижения затрат и минимизации воздействия на окружающую среду.	4		V		٧		
MEI249	Основы получения сплавов и композиционных материалов с особыми электромагнитным и и механическими свойствами	Изучение основ получения сплавов и композиционных материалов с особыми электромагнитными и механическими свойствами. Основы создания материалов с особыми свойствами, а также с принципами их выбора в зависимости от требуемых эксплуатационных характеристик. Изучение формирования электромагнитных и механических свойств материалов при создании новых сплавов и материалов. Технологии получения композиционных материалов с улучшенными электромагнитными и механическими свойствами, включая использование наноматериалов, углеродных	4		V	V		V	

		волокон, металлокерамических систем и других						
		составных материалов.						
MEI251	Экстрактивная металлургия редких и редкоземельных металлов	Изучение экстрактивной металлургии редких и редкоземельных металлов. Особенности технологических процессов, применяемых для извлечения редких и редкоземельных металлов из природных и вторичных источников, таких как литий, титан, цирконий, редкоземельные элементы. Термодинамика и кинетика процессов, методы разделения и очистки металлов, а также экологии и управления отходами. Инновационные подходы и экологические аспекты, извлечение и применения редкоземельных металлов в высокотехнологичных отраслях, таких как	5	V	V			
MEI252	Металлургия урана и технология его соединений	Изучение металлургии урана и технология его соединений. Освоение методов извлечения урана из руд, его рафинирования, а также производства различных химических соединений урана, используемых в ядерной энергетике, промышленности и научных исследованиях. Технологии обогащения урана, химическими реакциями его соединений, включая получение оксидов, карбидов и других материалов, используемых в ядерной энергетике, получением ядерного топлива, а также экологическими аспектами, связанными с добычей и переработкой урана. Изучение безопасности, экологии и управления отходами, связанными с добычей и переработкой урана, а также современные тенденции в области переработки урановых руд и разработки новых технологий.	5		V	V	V	
		Цикл профилирующих дисц	иплин					
		Вузовский компонент						

MEI253	Основы щадящей циркулярной металлургии (на англ)	Изучение основ щадящей циркулярной металлургии. Разработка схем компоновки оборудования на основе баланса экологии, сырья и энергии на его переработку, материальные потоки и расчеты оборудования. Изучение технологий, направленных на экологизацию производства (бережливые технологические схемы производства тяжелых цветных металлов, энерго- генерирующих металлов, благородных металлов), утилизация и захоронение металлургических отходов (кремниевые, пиритные, мышьяксодержащие, ртутные отходы). Снижение «Углеродного следа» технологий.	5		V		V		V	
MEI254	Методы управления отходами в экстративной металлургии	Изучение методов управления отходами в экстративной металлургии. Методы минимизации, утилизации и переработки отходов, с учетом экологических, экономических и технических факторов. Обработка и безопасное размещение отходов, а также экологические стандарты и законодательные требования в области управления отходами. Рассмотрение принципов устойчивого развития в металлургии и поиск инновационных решений для снижения воздействия на окружающую среду.	5		V				V	
MEI250	Физико- химические исследования в экстрактивной металлургии	Применением комплекса физико-химических методов анализа для идентификации металлургических систем и их свойств. Изучение методов анализа химических реакций, протекающих в ходе металлургических процессов, применение термодинамических и кинетических принципов для оптимизации этих процессов. Рассматриваются современные аналитические методы, включая спектроскопию, хроматографию и другие методы, используемые	5		V	V				V

		для оценки качества и эффективности процессов экстрактивной металлургии.							
		Цикл профилирующих дист	циплин	<u> </u>		1		·	
	1	Компонент по выбору			 				
MEI255	Титан и его сплавы	Формирование углублённых знаний о физико-химических свойствах титана, особенностях его производства, переработки и применения. В рамках курса изучаются современные методы получения титана, классификация и маркировка титановых сплавов, анализируется их структура, фазовые превращения, а также влияние легирующих и примесных элементов на эксплуатационные характеристики материалов. Особое внимание уделяется актуальным направлениям развития технологий обработки титана и его сплавов, а также тенденциям	5						V
MEI257	Рафинирование и аффинаж в металлургии радиоактивных металлов	мирового рынка. Изучение процессов рафинирование и аффинаж в металлургии радиоактивных металлов. Специфики переработки радиоактивных элементов, таких как уран, торий и другие, с учетом их физико-химических свойств. Изучать специальные способы и технологии, применяемые для повышения чистоты радиоактивных металлов, а также особенности работы с радиоактивными отходами. В курсе показано применение радиоактивных металлов в хозяйственной деятельности человека. Важным аспектом курса является освоение технологий, обеспечивающих безопасность и минимизацию воздействия на окружающую среду при переработке радиоактивных металлов.	5		/		V		
MEI259	Технологии аффинажа в экстрактивной металлургии	Дисциплина изучает методы аффинажа – глубокой очистки драгоценных и цветных металлов в экстрактивной металлургии. Рассматриваются химические,	5		V		V		V

		электрохимические и пирометаллургические							
		1 -							
		процессы очистки, переработка вторичного							
		сырья, а также современные технологии							
		автоматизации и экологические аспекты. Курс							
		формирует навыки подбора и оптимизации							
		методов аффинажа в промышленности.							
MEI260	Конверсионные	Изучение процессов преобразования	5			V	V		V
	процессы	радиоактивных металлов (таких как уран, торий							
	радиоактивных	и другие) и их соединений с целью повышения							
	металлов	их эффективности и безопасности в							
		промышленности, включая ядерную энергетику.							
		Курс охватывает методы восстановления,							
		обогащения, переработки и утилизации							
		радиоактивных материалов, а также процессы их							
		конверсии в более стабильные или полезные							
		формы. Изучение различных технологических							
		схем, включая методы химической экстракции,							
		разделения изотопов и обращения с							
		радиоактивными отходами. Особое внимание							
		уделяется оптимизации этих процессов с учётом							
		экологических и технических аспектов, а также							
		·							
		безопасности при работе с радиоактивными							
NATIO (1	П	материалами.			,,			.,	
MEI261	Процессы и	Изучение теоретических основ и практических	5		V			V	
	аппараты	аспектов процессов жидкостной экстракции для							
	жидкостной	извлечения, концентрирования и разделения							
	экстракции	металлов при переработке продуктивных и							
		технологических растворов. Особое внимание							
		уделяется применению экстракции в							
		металлургии и в технологиях переработки							
		металлургических отходов. В курсе							
		рассматриваются различные экстракционные							
		аппараты, такие как экстракционные колонки,							
		центрифуги, аппараты для многофазных систем,							
		а также методы оптимизации процессов для							

		повышения их эффективности.							
MEI262	Инновационные	Курс направлен на знакомство с принципами	5				٧		V
	технологии	создания композитов, включая выбор							
	получения	компонентов, способы их сочетания и							
	композитных	обработку, а также на освоение методов							
	материалов	улучшения механических, термических и других							
		свойств материалов; включает изучение							
		современных методов разработки и							
		производства композитных материалов с							
		улучшенными эксплуатационными							
		характеристиками. Курс охватывает основные							
		принципы создания композитов, таких как							
		выбор матриц и армирующих компонентов, а							
		также технологии их сочетания. Важное							
		внимание уделяется также перспективам							
		использования композитных материалов в							
		инновационных и высокотехнологичных							
MEIOCO	T.I	отраслях.	5		V				
MEI263	Инновационные	Изучение принципов получения порошков, их	3		V	V			V
	технологии в	формования, спекания и обработки, а также на							
	порошковой	изучение новейших разработок в области порошковой металлургии, таких как 3D-печать							
	металлургии	металлическими порошками и использование							
		нанопорошков. Освоение методов повышения							
		качества и производительности процессов, а							
		также экологические аспекты и устойчивое							
		производство в порошковой металлургии.							
MEI264	Аддитивные	Изучение аддитивных технологии в	5				V		V
	технологии в	металлургическом производстве, таких как	-						
	металлургическом	лазерное плавление порошков, электронно-							
	производстве	лучевая плавка и другие методы используемые							
		для изготовления сложных металлических							
		структур с высокой точностью и минимальными							
		отходами. Изучение особенности работы с							
		металлическими порошками, процессами							

									1	
		спекания и печати, а также применения								
		аддитивных технологий в разработке новых								
		материалов, улучшении характеристик и								
		производственных процессов. Особое внимание								
		уделяется возможностям аддитивных								
		технологий в высокотехнологичных отраслях								
		народного хозяйства, а также вопросам								
		экономической эффективности и экологии.								
MEI265	Инновационные	Изучение передовых методов и процессов,	4				V		V	
	технологии	использующих плазменные технологии для								
	плазменной	переработки металлов и создания новых								
	металлургии	материалов. Курс охватывает основы работы								
	meraniy primi	плазменных установок, такие как плазменная								
		плавка, восстановление металлов, плазменное								
		спекание и плазменная обработка поверхностей.								
		<u> </u>								
		Изучение принципы создания и контроля								
		плазменных потоков, а также применяемые								
		методы для улучшения качества металлов и								
		повышения их характеристик. Важное внимание								
		уделяется инновационным подходам, таким как								
		использование плазмы для обработки редких								
		металлов, переработки сложных отходов и								
		производства новых материалов с уникальными								
		свойствами.								
MEI256	Комплексное	Формирование знаний о современных	4		V	٧		V		
	использование	технологиях, применяемых для комплексной								
	редкометального и	переработки редких и радиоактивных элементов,								
	радиоактивного	а также на освоение комбинированных методов								
	сырья	минимизации отходов и повышения								
		экологической безопасности при их извлечении								
		и переработке; рассмотрены вопросы								
		управления радиоактивными отходами и								
		обеспечения безопасности на всех стадиях								
		производства. В курсе предусмотрены вопросы								
		разработки и применения эффективных и								

		инновационных технологических схем переработки рудного и техногенного сырья для улучшения извлечения полезных компонентов из металлургического сырья.							
MEI266	Защитные покрытия для металлургической отрасли	Изучение покрытий для защиты поверхности изделий от различных типов воздействий: износа, высоких температур и агрессивных сред. В курсе рассматриваются классификации покрытий по ряду признаков: материалам, способам нанесения, функциональным свойствам. Основное внимание уделено применению диффузионных, газотермических и гальванических покрытий.	5			V	V		
MEI258	Моделирование и оптимизация технологических процессов экстрактивной металлургии	Изучение методов математического моделирования и оптимизации для анализа и улучшения процессов экстракции металлов и переработки руд. Курс охватывает создание термодинамических и кинетических моделей процессов гидрометаллургии, пирометаллургии и электролиза, а также методы оптимизации технологических параметров процессов с целью повышения их эффективности и снижения затрат. Особое внимание уделяется использованию современных программных средств и математических инструментов для расчета материальных балансов и потоков металлургического производства, прогнозирования и оптимизации металлургических процессов.	5		V	V			

5. Учебный план образовательной программы

НЕКОММЕРЧЕСКОЕ АКЦИОН ЕРНОЕ ОБЩЕСТВО «КАЗАХСКИЙ Н АЦИОН АЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И.САТПАЕВА»

«УТВЕРЖДЕНО» Решением Учёного совета НАО «КазНИТУ им. К.Сатпаева» Протокол № 9 от 20.02.2025

РАБОЧИЙ УЧЕБНЫЙ ПЛАН

 Учебный год
 2025-2026 (Осень, Весна)

 Группа образовательных программ
 МП17 - "Метальзурги ческая инженерин"

 Образовательнях программа
 7М07232 - "Экстрактивная метальзургия"

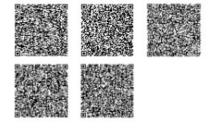
 Присуждаемая академическая степень
 Магистр техника и технологии

 Форма и срок обучения
 0 чная (профытьное направление) - 1,5 года

Код дисциплины	Наименование дисциплии	Блок	Цикл	Общий объем в академических	Весто	лек/лаб/пр Аудиторные	в часах СРО(в			сление ау гий по ку семестра	-	Еререквизитность
дисципстины	кредитах		and the second second second	- acon	часы	чисж	Kompain	1 κ	урс	2 курс		
							СРОП)		1 сем	2 сем	3 сем	
	II.	цикл	БАЗОЕ	вых дисциг	лин	(EI)						
	9	M-1.	Модул	њ базовой под	готовк	си	318		35. 50		8	
LNG212	Иностранный язык (профессиональный)		БД, ВК	2	60	0/0/30	30	9	2			
MNG726	Менецимент		EL, BK	2	60	15/0/15	30	Э	2			
HUM211	Психиотия управления		EL. BK	2	60	15/0/15	30	Э	2			
MEI248	Термодинамика, кинетика, расчеты и прогнозирование металлургических процессов	1	БД, KB	4	120	30/0/15	75	э	4			Ġ.
MEI249	Основы получения сплавов и композиционных материалов с особыми электромагнитиыми и механическими свойствам и	1	БД, KB	4	120	30/15/0	75	Э	4			
MEI251	Экстрактивная метаплургия редких и редкоземельных метаплов	2	БД, KB	5	150	30/0/15	105	Э	5			
MEI252	Металлургия урана и технология его соединений	2	KB	5	150	30/0/15	105	3	5			6
	цикл	ПР ОФ	илир	ующих ди	сцип	лин (пд)						
		M-2. M	одуль	профильной п	одгото	вки						
MEI250	Физико-химические исследования в экстрактивной металлургии		ПД, ВК	5	150	30/0/15	105	Э	5			
MEI253	Основы щадящей металлургия циркулярной эксвомики (на английском)		ПД, ВК	5	150	30/0/15	105	Э	5			
MEI254	Методы управления отходами в экстрактивной металлургия		ПД, ВК	5	150	30/0/15	105	Э	5			v.
MEI255	Титан и его сплавы	1	ПД, КВ	5	150	30/0/15	105	Э		5		
MEI257	Рафінирование и аффинаж в металлургии радизактивных металлов	1	ПД, КВ	5	150	30/0/15	105	Э		5		
MEI259	Технологии аффинажа в экстрактивной металлургии	2	ПД, КВ	5	150	30/0/15	105	Э		5		
MEI260	Конверсионные процессы радиоактивных металлов	2	ПД, КВ	5	150	30/0/15	105	Э	s 8:	5		
MEI261	Процессы и аппараты жидкоствой экстракции	3	ПД, КВ	5	150	30/0/15	105	Э		5		
MEI262	Ниновациянные технологии получения композитиках материалов	3	ПД, КВ	5	150	30/0/15	105	Э		5		
MEI263	Инювационные темологии в порошковой металлургии	4	ПД, КВ	5	150	30/0/15	105	Э		5		u .
MEI264	Адавтивные технологии в метадпургическом производстве	4	ПД, КВ	5	150	30/0/15	105	Э	e e	5		0
MEI266	Защитные покрытия для металтургической отрасли	5	ПД, КВ	5	150	30/15/0	105	Э		5		
MEI258	Моделирование и оптим изация технологических процессов экстрактивной металлургии	5	ПД, КВ	5	150	30/0/15	105	Э		5		-
MEI265	Инновационные технология пламенной метаплургии	1	ПД, КВ	4	120	30/0/15	75	Э			4	

НЕКОММЕРЧЕСКОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО «КАЗАХСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ имени К.И. САТПАЕВА»

MEI256	Комплексное использование редкометального и радиоактивного сырья	1	ПД, КВ	4	120	30/0/15	75	Э			4	
М-3. Практико-ориентированный модуль												
AAP248	Производственная практика		ПД, ВК	5				0		5		
М-4. Экспериментально-неследовательский модуль												
AAP249	Эксперим ентально-песледовательская работа магистранта, включая прохождение стажировки и выполнение магистерского проекта		ЭИРМ	18				0			18	
М-5. Модуль итоговой аттестации												
ECA213	Оформление и защита магистерского проекта		ИА	8							8	
	Итого по УНИВЕРСИТЕТУ:								30	30	30	
moro no simples Chile.15;							60		30			


Количество кредитов за весь период обучения

Кол цикла Циклы дисциплин		Кредиты									
вод цикла	циклы дисциплин	Общательный компонент	Вузовский компонент	Компонент по выбору	Beero						
ООД	Цикл общеобразовательных дисциплин	0	0	0	0						
БД	Цикл безовых дисциплин	0	6	9	15						
пд	Цисл профилирующих дисциплин	0	20	29	49						
	Всего по теоретическому обучению:	0	26	38	64						
нирм	Научно-исследовательская работа магистранта				0						
ЭИРМ	Экспериментально-исследовательская работа магистранта				18						
ИА	Итоговая аттестация				8						
	итого:				90						

Решение Учебно-методического совета КазНИТУ им. К.С атпаева. Протокол № 4 от 03.02.2025

Решение Ученого совета института. Протокол № 5 от 23.01.2025

Подписано:	
Член Правления — Проректор по академ ическим вопросам	Ускенбаева Р.К.
Соглисовино:	
Vice Provost по академическому развитию	Кальпеева Ж. Б.
Начальник отдела - Отдел управления ОП и учебно- методической работой	Жумагалиева А. С.
Директор - Горно-металлургический институт имени О.Байконурова	Рысбеков К. Б.
Заведующий кафедрой - Металлургия и обогащение полезиых исколаемых	Барменшинова М. І
Представитель академ ического комитета от работодителей	Оспанов Е. А.

